EE 330 Lecture 41

Digital Circuits

Capacitive Loading Effects on Propagation Delay Overdrive Factors
Propagation Delay With Multiple Levels of Logic

Spring 2024 Exam Schedule

Exam 1 Friday Feb 16
Exam 2 Friday March 8
Exam 3 Friday April 19
Final Exam Tuesday May 7 7:30 AM - 9:30 AM

The Reference Inverter

$$
\begin{aligned}
& R_{\text {PDREF }}=R_{\text {PUREF }} \\
& C_{\text {REF }}=C_{\text {IN }}=4 C_{O X} W_{\text {MIN }} L_{\text {MIN }} \\
& \mathrm{R}_{\text {PDREF }}=\frac{\mathrm{L}_{\text {MIN }}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\mathrm{MIN}}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{Tn}}\right)} \stackrel{V_{T_{n}}=2 V_{D D}}{=} \frac{\mathrm{L}_{\mathrm{MIN}}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }}\left(0.8 \mathrm{~V}_{\mathrm{DD}}\right)} \\
& \mathbf{t}_{\text {HLREF }}=\mathbf{t}_{\text {LHREF }}=\mathbf{R}_{\text {PDREF }} \mathbf{C}_{\text {REF }} \\
& t_{\text {REF }}=t_{\text {HLREF }}+t_{\text {LHREF }}=2 R_{\text {PDREF }} C_{\text {REF }}
\end{aligned}
$$

Device Sizing

Equal Worse-Case Rise/Fall Device Sizing Strategy (and same drive as ref inverter)
-- (same as $\mathrm{V}_{\text {TRIP }}=\mathrm{V}_{\mathrm{DD}} / 2$ for worst case delay in typical process considered in example)
Assume $\mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3$ How many degrees of freedom were available? $L_{n}=L_{p}=L_{\text {MIN }}$

INV
$W_{n}=W_{\text {MIN }}, W_{p}=3 W_{\text {MIN }}$

$$
C_{I N}=C_{\text {REF }}
$$

$\mathrm{Fl}=1$

k-input NOR
$\mathbf{W}_{\mathrm{n}}=\mathrm{W}_{\text {MIN }}, \quad \mathbf{W}_{\mathrm{p}}=3 \mathrm{~kW} \mathbf{W I N}_{\text {MIN }}$

$$
\mathrm{C}_{\text {IN }}=\left(\frac{3 \mathrm{k}+1}{4}\right) \mathrm{C}_{\text {REF }}
$$

$$
\mathrm{Fl}=\left(\frac{3 \mathrm{k}+1}{4}\right)
$$

> k-input NAND
$W_{n}=k W_{\text {MIN }}, W_{p}=3 W_{\text {MIN }}$
$\mathrm{C}_{\mathrm{IN}}=\left(\frac{3+\mathrm{k}}{4}\right) \mathrm{C}_{\text {REF }}$
$\mathrm{FI}=\left(\frac{3+\mathrm{k}}{4}\right)$

Multiple Input Gates:
2-input NOR

Device Sizing

2-input NAND
 k-input NOR

k-input NAND

Equal Worst Case Rise/Fall (and equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$) $\mathbf{W n = ?}$
Wp=?
Fastest response $\left(\mathrm{t}_{\mathrm{HL}}\right.$ or $\left.\mathrm{t}_{\mathrm{LH}}\right)=$?
Worst case response ($t_{\text {PROP }}$, usually of most interest)?
Input capacitance (FI) = ?
Minimum Sized (assume driving a load of $\mathrm{C}_{\text {REF }}$)
$\mathbf{W n = W m i n}$
Wp=Wmin
Fastest response $\left(\mathrm{t}_{\mathrm{HL}}\right.$ or $\left.\mathrm{t}_{\mathrm{LH}}\right)=$?
Slowest response (t_{HL} or t_{LH}) = ?
Worst case response ($\mathrm{t}_{\text {PROP }}$, usually of most interest)?
Input capacitance (FI) = ?

Review from Last Time
Device Sizing - minimum size driving $\mathrm{C}_{\text {REF }}$

INV
k-input NOR

$$
\begin{array}{cc}
\mathrm{t}_{\text {PROP }}=0.5 t_{\text {REF }}+\frac{3 k}{2} t_{\text {REF }} & \mathrm{t}_{\mathrm{PROP}}=\frac{3}{2} t_{\text {REF }}+\frac{k}{2} t_{\text {REF }} \\
\mathrm{t}_{\mathrm{PROP}}=\left(\frac{3 k+1}{2}\right) t_{\text {REF }} & \mathrm{t}_{\mathrm{PROP}}=\frac{3+k}{2} t_{\text {REF }}
\end{array}
$$

$$
\mathrm{FI}=\frac{\mathrm{C}_{\mathrm{REF}}}{2}
$$

$$
\frac{1+3 \mathrm{k}^{2}}{2 \mathrm{k}} t_{\text {REF }} \leq \mathrm{t}_{\mathrm{PROP}} \leq \frac{3 k+1}{2} t_{\text {REF }}
$$

$$
\mathbf{R}_{\mathrm{PU}}=3 \mathbf{R}_{\text {PDREF }}
$$

$$
\mathrm{FI}=\frac{\mathrm{C}_{\mathrm{REF}}}{2}
$$

$$
\mathbf{R}_{\text {PD }}=\mathbf{R}_{\text {PDREF }}
$$

$$
\frac{\mathbf{R}_{\text {PDREF }}}{k} \leq \mathbf{R}_{\mathrm{PD}} \leq \mathbf{R}_{\text {PDREF }}
$$

$$
\mathbf{R}_{\mathbf{P U}}=3 \mathbf{k} \mathbf{R}_{\text {PDREF }}
$$

$$
\begin{aligned}
& \stackrel{\text { © }}{\underset{\sim}{0}} \mathrm{t}_{\text {PROP }}=0.5 t_{\text {REF }}+\frac{3}{2} t_{\text {REF }} \\
& \mathrm{t}_{\text {PROP }}=2 t_{\text {REF }}
\end{aligned}
$$

k-input NAND

$$
\frac{3+k^{2}}{2 k} t_{R E F} \leq \mathrm{t}_{\mathrm{PROP}} \leq \frac{3+k}{2} t_{R E F}
$$

$$
\mathrm{FI}=\frac{\mathrm{C}_{\mathrm{REF}}}{2}
$$

$$
\frac{\mathbf{3} \mathbf{R}_{\mathrm{PDREF}}}{\mathbf{k}} \leq \mathbf{R}_{\mathrm{PU}} \leq 3 \mathbf{R}_{\text {PDREF }}
$$

$$
\mathbf{R}_{\mathrm{PD}}=\mathbf{k} \mathbf{R}_{\mathrm{PDREF}}
$$

Device Sizing Summary

INV

k-input NOR

k-input NAND
$\mathrm{C}_{\text {IN }}$ for $\mathrm{N}_{\text {AND }}$ gates is considerably smaller than for NOR gates for equal worst-case rise and fall times
$\mathrm{C}_{\text {IN }}$ for minimuim-sized structures is independent of number of inputs and much smaller than $\mathrm{C}_{\text {IN }}$ for the equal rise/fall time case
$R_{\text {PU }}$ gets very large for minimum-sized NOR gate

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS Inverter
Static CMOS Logic Gates
Ratio Logic
Propagation Delay
Simple analytical models

- FI/OD
- Logical Effort
- Elmore Delay

Sizing of Gates
The Reference Inverter
done
partial

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Assume all gates sized for equal worst-case rise/fall times
For \boldsymbol{n} levels of logic between A and F

$$
\mathrm{t}_{\mathrm{PROP}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{PROP}}(k)
$$

Remember: $\mathrm{t}_{\text {prop }}$ is defined to be the worst-case (slowest) propagation delay

Propagation Delay in MultipleLevels of Logic with Stage Loading

Analysis strategy : Express delays in terms of those of reference inverter

Assume $\mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3$
$\mathbf{W}_{\mathrm{n}}=\mathbf{W}_{\text {MIN }}, \mathbf{W}_{\mathrm{p}}=3 \mathbf{W}_{\text {MIN }}$

> In $0.5 \mathrm{uproc} \mathrm{t}_{\text {REF }}=20 \mathrm{ps}$, $\mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$

$$
\begin{aligned}
& C_{\text {REF }}=C_{I N}=4 C_{O X} W_{\text {MIN }} L_{\text {MIN }} \\
& F I=1
\end{aligned}
$$

$$
\mathbf{R}_{\text {PDREF }}=\frac{\mathbf{L}_{\mathrm{MIN}}}{\boldsymbol{\mu}_{\mathbf{n}} \mathbf{C}_{\mathbf{O X}} \mathbf{W}_{\mathbf{M I N}}\left(\mathbf{V}_{\mathrm{DD}}-\mathbf{V}_{\mathbf{T n}}\right)} \stackrel{V_{T n}=.2 V_{D D}}{=} \frac{\mathbf{L}_{\mathrm{MIN}}}{\boldsymbol{\mu}_{\mathbf{n}} \mathbf{C}_{\mathbf{O X}} \mathbf{W}_{\mathrm{MIN}}\left(\mathbf{0 . 8} \mathbf{V}_{\mathrm{DD}}\right)}
$$

$$
t_{\text {REF }}=t_{\text {HLREF }}+t_{\text {LHREF }}=2 R_{\text {PDREF }} C_{\text {REF }}
$$

$$
L_{n}=L_{p}=L_{M I N}
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Assume:

- all gates sized for equal worst-case rise/fall times
- all gates sized to have worst-case rise and fall times equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$

$t_{\text {PROP-AH }}=t_{\text {ref }} F I$

Observe:

- With these assumptions, propagation delay of these gates will be scaled by the ratio of the total load capacitance on each gate to $C_{\text {REF }}$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Assume:

- all gates sized for equal worst-case rise/fall times
- all gates sized to have worst case rise and fall times equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$
Observe:
- Propagation delay of these gates will be scaled by the ratio of the total load capacitance on each gate to $C_{\text {REF }}$

What loading will a gate see?

- Input capacitance to other gates
- Any load capacitors
- Parasitic interconnect capacitnaces

Propagation Delay with Stage Loading

FI of a capacitor

FI of a gate (input k)

Fl of an interconnect

Overall FI

$$
\begin{gathered}
t_{\mathrm{REF}}=2 \mathrm{R}_{\mathrm{PDRef}} C_{\mathrm{REF}} \\
\mathrm{C}_{\mathrm{REF}}=4 \mathrm{C}_{\mathrm{OX}} W_{\mathrm{MIN}} L_{\mathrm{MIN}}
\end{gathered}
$$

$$
\mathrm{FI}_{\mathrm{C}}=\frac{\mathrm{C}}{\mathrm{C}_{\mathrm{REF}}}
$$

$$
\mathrm{FI}_{\mathrm{G}}=\frac{\mathrm{C}_{\mathrm{INk}}}{\mathrm{C}_{\mathrm{REF}}}
$$

$$
\mathrm{FI}_{\mathrm{I}}=\frac{\mathrm{C}_{\mathrm{INI}}}{\mathrm{C}_{\mathrm{REF}}}
$$

$$
\mathrm{FI}=\frac{\sum_{\text {Gates }} \mathrm{C}_{\mathrm{INGi}}+\sum_{\text {Capacitances }} \mathrm{C}_{\mathrm{INCi}}+\sum_{\text {Interconnects }} \mathrm{C}_{\mathrm{INII}}}{\mathrm{C}_{\mathrm{REF}}}
$$

FI can be expressed either in units of capacitance or normalized to $C_{\text {REF }}$
Most commonly FI is normalized but must determine from context
If gates sized to have same drive as ref inverter

$$
\mathrm{t}_{\text {prop-k }}=\mathrm{t}_{\mathrm{REF}} \bullet \mathrm{FI}_{\text {LOAD-k }}
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Example

Assume all gates sized for equal worst-case rise/fall times
Assume all gate drives are the same as that of reference inverter
Neglect interconnect capacitance, assume load of $10 C_{\text {REF }}$ on F output

$$
\left.\begin{array}{l}
\quad \begin{array}{l}
\text { Determine propagation delay from A to } \mathrm{F} \\
\mathrm{t}_{\mathrm{PROP}}=\sum_{\mathrm{k}=1}^{4} \mathrm{t}_{\text {PROP-k }} \\
\mathrm{t}_{\text {prop-k }}=\mathrm{t}_{\mathrm{REF}} \bullet \mathrm{FI}_{\mathrm{LOAD-k}}
\end{array}
\end{array}\right\} \begin{aligned}
& \mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\text {REF }} \sum_{\mathrm{k}=1}^{4} \mathrm{FI}_{\mathrm{LOAD}-\mathrm{k}} \\
& \mathrm{~F} \mathrm{I}_{\mathrm{LOAD}-\mathrm{k}}=\mathrm{F} \mathrm{I}_{\mathrm{k}+1} \\
& \mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\text {REF }} \sum_{\mathrm{k}=1}^{4} \mathrm{FI}_{\mathrm{k}+1}
\end{aligned}
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

$\mathrm{FI}_{\text {NOR }}=\left(\frac{3 \mathrm{k}+1}{4}\right) \mathrm{C}_{\mathrm{REF}}$
$\mathrm{FI}_{\text {NAND }}=\left(\frac{3+k}{4}\right) \mathrm{C}_{\text {REF }}$
Assume all gates sized for equal worst-case rise/fall times
Assume all gate drives are the same as that of reference inverter Neglect interconnect capacitance, assume load of $10 C_{\text {REF }}$ on F output Determine propagation delay from A to F

What loading will a gate see?

$$
\mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\text {REF }} \sum_{\mathrm{k}=1}^{4} \mathrm{FI}_{\mathrm{k}+1}
$$

Derivation:

$\mathrm{FI}_{2}=\frac{6}{4} \mathrm{C}_{\text {REF }} \quad \mathrm{FI}_{3}=\mathrm{C}_{\text {REF }}+\frac{7}{4} \mathrm{C}_{\text {REF }} \quad \mathrm{FI}_{4}=\frac{7}{4} \mathrm{C}_{\text {REF }}+\frac{13}{4} \mathrm{C}_{\text {REF }} \quad \mathrm{FI}_{\text {LOAD }}=\mathrm{Fl}_{\mathrm{lH}}{ }^{5}=10 \mathrm{C}_{\text {REF }}$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Example

Assume all gates sized for equal worst-case rise/fall times
Assume all gate drives are the same as that of reference inverter
Neglect interconnect capacitance, assume load of $10 C_{\text {REF }}$ on F output Determine propagation delay from A to F
DERIVATIONS

$$
\mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\text {REF }} \sum_{\mathrm{k}=1}^{4} \mathrm{FI}_{\mathrm{k}+1}
$$

$$
\begin{array}{rr}
\mathrm{FI}_{2}=\frac{6}{4} \mathrm{C}_{\mathrm{REF}} \quad \mathrm{FI}_{3}=\mathrm{C}_{\mathrm{REF}}+\frac{7}{4} \mathrm{C}_{\mathrm{REF}} \quad \mathrm{FI}_{4}=\frac{7}{4} \mathrm{C}_{\mathrm{REF}}+\frac{13}{4} \mathrm{C}_{\mathrm{REF}} \quad \mathrm{FI}_{5}=10 \mathrm{C}_{\mathrm{REF}} \\
\mathrm{t}_{\mathrm{PROP} 1}=\frac{6}{4} \mathrm{t}_{\mathrm{REF}} \quad \mathrm{t}_{\mathrm{PROP} 2}=\left(1+\frac{7}{4}\right) \mathrm{t}_{\mathrm{REF}} \quad \mathrm{t}_{\mathrm{PROP} 3}=\left(\frac{7}{4}+\frac{13}{4}\right) \mathrm{t}_{\mathrm{REF}} \quad \mathrm{t}_{\mathrm{PROP} 4}=10 \mathrm{t}_{\mathrm{REF}} \\
\mathrm{t}_{\mathrm{PROP}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{PROP}-\mathrm{k}}=\mathrm{t}_{\mathrm{REF}} \sum_{\mathrm{k}=1}^{n} \mathrm{FI}_{\mathrm{k}+1}=\mathrm{t}_{\mathrm{REF}}\left(\frac{6}{4}+\frac{11}{4}+\frac{20}{4}+10\right)=\mathrm{t}_{\mathrm{REF}}(19.25)
\end{array}
$$

Propagation Delay Through Multiple Stages of Logic with Stage Loading

(assuming gate drives are all same as that of reference inverter)

Summary:
Identify the gate path from A to F

$$
t_{\text {PROPk }}=t_{\text {REF }} F I_{k+1}
$$

Propagation delay from A to F :

$$
\mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{REF}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{Fl}_{\mathrm{k}+1}
$$

This approach is analytically manageable, provides modest accuracy and is "faithful"

Digital Circuit Design

done
partial

What if the propagation delay is too long (or too short)?

Propagation delay from A to F:

$$
\begin{gathered}
\mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{REF}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{Fl}_{(\mathrm{k}+1)} \\
\mathbf{t}_{\mathrm{PROPk}}=\mathbf{t}_{\mathrm{REF}} \mathrm{Fl}_{(\mathbf{k}+\mathbf{1})}
\end{gathered}
$$

Recall:

Multiple Input Gates:
2-input NOR

Device Sizing

2-input NAND k-input NOR

k-input NAND

Equal Worst Case Rise/Fall (and equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$)

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{n}}=? \\
& \mathrm{~W}_{\mathrm{p}}=?
\end{aligned}
$$

Fastest response $\left(\mathrm{t}_{\mathrm{HL}}\right.$ or $\left.\mathrm{t}_{\mathrm{LH}}\right)=$?
Worst case response ($t_{\text {PROP }}$, usually of most interest)?
Input capacitance (FI) = ?
Minimum Sized (assume driving a load of $\mathrm{C}_{\text {REF }}$)

$$
\begin{aligned}
& \mathbf{W}_{\mathrm{n}}=\mathbf{W}_{\text {min }} \\
& \mathbf{W}_{\mathrm{p}}=\mathbf{W}_{\text {min }}
\end{aligned}
$$

Fastest response $\left(\mathrm{t}_{\mathrm{HL}}\right.$ or $\left.\mathrm{t}_{\mathrm{LH}}\right)=$?
Slowest response (t_{HL} or t_{LH}) = ?
Worst case response ($\mathrm{t}_{\text {PROP }}$, usually of most interest)?
Input capacitance (FI) = ?

Recall:

Device Sizing

Overdrive Factors

Example: Determine $t_{\text {prop }}$ in $0.5 u$ process if $\mathbf{C}=10 \mathrm{pF}$ In $0.5 u_{\text {proc }} t_{\text {REF }}=20 \mathrm{ps}$, $\mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$
$\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \bullet \mathrm{FI}=\mathbf{t}_{\text {REF }} \bullet \frac{10 p F}{4 f F}=\mathbf{t}_{\text {REF }} \bullet 2500$
$t_{\text {PROP }}=20 \mathrm{ps} \cdot 2500=50 \mathrm{nsec}$

Note this is generally considered to be unacceptably long!

Overdrive Factors

Scaling widths of ALL devices by constant ($\mathrm{W}_{\text {scaled }}=\mathbf{W} \times O D$) will change "drive" capability relative to that of the reference inverter but not change relative value of $t_{H L}$ and $t_{L H}$

$$
\begin{gathered}
\mathrm{R}_{\mathrm{PD}}=\frac{\mathrm{L}_{1}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{1}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{Tn}}\right)} \\
\mathrm{R}_{\mathrm{PU}}=\frac{\mathrm{L}_{2}}{\mu_{\mathrm{P}} \mathrm{C}_{\mathrm{Ox}} \mathrm{~W}_{2}\left(\mathrm{~V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{TP}}\right)}
\end{gathered}
$$

$$
\mathrm{R}_{\mathrm{PDOD}}=\frac{\mathrm{L}_{1}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}}\left[\mathrm{OD} \bullet \mathrm{~W}_{1}\right]\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{Tn}}\right)}=\frac{\mathrm{R}_{\mathrm{PD}}}{\mathrm{OD}}
$$

$$
\mathrm{R}_{\text {PUOD }}=\frac{\mathrm{L}_{2}}{\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{OX}}\left[\mathrm{OD} \bullet \mathrm{~W}_{2}\right]\left(\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{TP}}\right)}=\frac{\mathrm{R}_{\mathrm{PU}}}{\mathrm{OD}}
$$

$$
\mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{REF}} \bullet \mathrm{FI}_{\mathrm{L}} \cdot \frac{1}{\mathrm{OD}}
$$

Scaling widths of ALL devices by constant will change $\mathrm{FI}_{\mathrm{IN}}$ to gate by OD

$$
\mathrm{C}_{\text {IN }}=\mathrm{C}_{\mathrm{ox}}\left(\mathrm{~W}_{1} \mathrm{~L}_{1}+\mathrm{W}_{2} \mathrm{~L}_{2}\right)
$$

$$
\mathrm{C}_{\mathbb{N} O D}=\mathrm{C}_{0 \mathrm{OX}}\left(\left[\begin{array}{lll}
\mathrm{O} & \left.\mathrm{~W} \cdot \mathrm{~W}_{1}\right] \mathrm{L}_{1}+[\mathrm{O} & \left.\left.\mathrm{D} \cdot \mathrm{~W}_{2}\right] \mathrm{~L}_{2}\right)=\mathrm{O} \mathrm{D} \bullet \mathrm{C}_{\mathbb{N}} .
\end{array}\right.\right.
$$

Overdrive Factors - Summary

(For equal worst-case rise/fall gates)

Still equal worst-case rise/fall

$$
\begin{aligned}
& \mathbf{t}_{\text {PROP }}=t_{\text {REF }} \cdot \mathrm{FI}_{\mathrm{L}} \cdot \frac{1}{\mathrm{OD}} \\
& \left.\mathrm{~F}\right|_{\mathbb{N}}==O D \cdot C_{\text {REF }}
\end{aligned}
$$

Overdrive Factors

Example: Determine $\mathrm{t}_{\text {prop }}$ in 0.5 u process if $\mathrm{C}=10 \mathrm{pF}$ and $\mathrm{OD}=1000$

$$
\begin{aligned}
& \mathbf{t}_{\mathrm{PROP} 1}=\mathbf{t}_{\mathrm{REF}} \cdot \mathrm{FI}_{\mathrm{LOAD}} \bullet \frac{1}{\mathrm{OD}}=\mathbf{t}_{\mathrm{REF}} \bullet \frac{10 p F}{4 f F}=\mathbf{t}_{\mathrm{REF}} \bullet 2500 \\
& \mathbf{t}_{\mathrm{PROP} 2}=\mathbf{t}_{\mathrm{REF}} \bullet \mathrm{FI}_{\mathrm{LOAD}} \bullet \frac{1}{\mathrm{OD}}=\mathbf{t}_{\mathrm{REF}} \bullet \frac{10 p F}{4 f F} \bullet \frac{1}{\mathbf{1 0 0 0}}=\mathbf{t}_{\mathrm{REF}} \bullet 2.5
\end{aligned}
$$

Note sizing the inverter with the OD improved delay by a factor of 1000 !

Overdrive Factors

- By definition, the factor by which the W/L of all devices are scaled above those of the reference inverter is termed the overdrive factor, OD
- Scaling widths by overdrive factor DECREASES resistance by same factor
- Scaling all widths by a constant does not compromise the symmetry between the rise and fall times (i.e. $t_{H L}=t_{L H}$)
- Judicious use of overdrive can dramatically improve the speed of digital circuits
- Large overdrive factors are often used
- Scaling widths by overdrive factor INCREASES input capacitance by same factor - So is there any net gain in speed?

Digital Circuit Design

Propagation Delay with Over-drive Capability

Overdrive

Asymmetric Overdrive
Define the Asymmetric Overdrive Factors of the stage to be the factor by which PU and PD resistors are scaled relative to those of the reference inverter.

$$
\begin{aligned}
& R_{\text {PDEFF }}=\frac{R_{\text {PDREF }}}{O D_{\text {HL }}} \quad R_{\text {PUEFF }}=\frac{R_{\text {PUREF }}}{O D_{\text {LH }}} \\
& \mathbf{t}_{\mathrm{HL}}=\frac{\mathbf{R}_{\text {PDREF }}}{\mathbf{O D}_{H L}} \mathbf{C}_{\mathrm{L}} \\
& \mathbf{t}_{\mathrm{LH}}=\frac{\mathbf{R}_{\text {PDREF }}}{\mathbf{O D}_{L H}} \mathbf{C}_{\mathrm{L}} \\
& \mathbf{t}_{\text {PROP }}=\mathbf{t}_{H \mathrm{LL}}+\mathbf{t}_{\text {LH }}=\frac{\mathbf{R}_{\text {PDREF }}}{\mathbf{O D}_{H L}} \mathbf{C}_{\mathrm{L}}+\frac{\mathbf{R}_{\text {PDREF }}}{\mathbf{O D}_{L H}} \mathbf{C}_{\mathrm{L}}=\mathbf{R}_{\text {PDREF }} \mathbf{C}_{\mathrm{L}}\left[\frac{1}{\mathbf{O D}_{H L}}+\frac{1}{\mathbf{O D _ { L H }}}\right]=\frac{\mathbf{t}_{\text {REF }}}{\mathbf{2}}\left[\frac{1}{\mathbf{O D}_{H L}}+\frac{1}{\mathbf{O D}_{L H}}\right] \mathbf{F}_{\mathrm{IL}}
\end{aligned}
$$

Propagation Delay with Over-drive Capability

Overdrive

If an inverter with $O D$ is sized for equal rise/fall, $\quad O D_{H L}=O D_{\text {LH }}=O D$

$$
\mathbf{t}_{\text {PROP }}=\mathbf{R}_{\text {POREF }} \mathbf{c}_{[}\left[\frac{1}{\mathbf{O D}_{H L}}+\frac{1}{\mathbf{O D}}\right]=\mathbf{R}_{\text {POREF }} \mathbf{c}_{\llcorner } \frac{2}{\mathbf{O D}}=\mathbf{t}_{\text {REF }} \frac{\mathbf{F}_{\mathrm{L}}}{\mathbf{O D}}
$$

OD may be larger or smaller than 1

Propagation Delay with Over-drive Capability

Example

Compare the propagation delays. Assume the OD is 900 in the third case and 30 in the fourth case. Don't worry about the extra inversion at this time.

$$
\begin{gathered}
t_{\text {PROP }}=900 t_{\mathrm{REF}} \\
t_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{REF}}+900 \mathrm{t}_{\mathrm{REF}}=901 \mathrm{t}_{\mathrm{REF}} \\
\mathrm{t}_{\mathrm{PROP}}=900 \mathrm{t}_{\mathrm{REF}}+\mathrm{t}_{\mathrm{REF}}=\mathbf{9 0 1 t _ { \mathrm { REF } }} \\
\mathrm{t}_{\mathrm{PROP}}=\mathbf{3 0} \mathrm{t}_{\mathrm{REF}}+30 \mathrm{t}_{\mathrm{REF}}=\mathbf{6 0} \mathrm{t}_{\mathrm{REF}}
\end{gathered}
$$

- Dramatic reduction in $\mathrm{t}_{\text {PROP }}$ is possible (input is driving same in all 3 cases)
- Will later determine what optimal number of stages and sizing is

Propagation Delay in MultipleLevels of Logic with Stage Loading

$F_{l k}$ denotes the total loading on stage k which is the sum of the F_{1} of all loading on stage k

Summary: Propagation delay from A to F:

$$
t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{l(k+1)}}{O D_{k}}
$$

Propagation Delay in MultipleLevels of Logic with Stage Loading

Will consider an example with the five cases

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall (no overdrive)

$$
t_{P R O P}=t_{R E F} \sum_{k=1}^{n} \mathrm{Fl}_{(k+1)}
$$

- Equal rise/fall with overdrive

$$
t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{l(k+1)}}{O D_{k}}
$$

- Minimum Sized

$$
t_{\text {PROP }}=?
$$

- Asymmetric Overdrive
$t_{\text {PROP }}=$?
- Combination of equal rise/fall,

$$
t_{\text {PROP }}=?
$$ minimum size and overdrive

Driving Notation

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive

Notation will be used only if it is not clear from the context what sizing is being used

Propagation Delay in Multiple-Levels of

Logic with Stage Loading

Asymmetric Overdrive

Recall:

Define the Asymmetric Overdrive Factors of the stage to be the factors by which PU and PD resistors are scaled relative to those of the reference inverter.

$$
R_{\text {PDEFF }}=\frac{R_{\text {PDREF }}}{O D_{H L}} \quad R_{\text {PUEFF }}=\frac{R_{\text {PUREF }}}{O D_{\text {LH }}}
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Asymmetric Overdrive

Recall:
If inverter is not equal rise/fall

$$
t_{\text {PROP }}=t_{\text {LH }}+t_{\text {HL }}=t_{\text {REF }} \frac{F_{\mathrm{IL}}}{O D}
$$

$$
\begin{gathered}
t_{\mathrm{HL}}=\frac{R_{\text {PDREF }}}{O D_{\text {HL }}} C_{\mathrm{L}}=\frac{1}{2} t_{\text {REF }} \frac{F_{\mathrm{LL}}}{O D_{\text {HL }}} \\
t_{\mathrm{LH}}=\frac{R_{\text {PUREF }}}{O D_{\mathrm{LH}}} C_{\mathrm{L}}=\frac{1}{2} t_{\text {REF }} \frac{F_{\mathrm{IL}}}{O D_{\mathrm{LH}}} \\
t_{\text {PROP }}=t_{\mathrm{HL}}+t_{\mathrm{LH}}=\frac{1}{2} t_{\text {REF }} F_{\mathrm{IL}}\left(\frac{1}{O D_{\mathrm{HL}}}+\frac{1}{O D_{\mathrm{LH}}}\right)
\end{gathered}
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Asymmetric Overdrive

$$
t_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{HL}}+\mathbf{t}_{\mathrm{LH}}=\frac{1}{2} t_{\mathrm{REF}} \mathrm{~F}_{\mathrm{LLOAD}}\left(\frac{1}{O D_{\mathrm{HL}}}+\frac{1}{O D_{\mathrm{LH}}}\right)^{\nu}
$$

When propagating through \mathbf{n} stages:

F_{Ik} denotes the total loading on stage k which is the sum of the F_{1} of all loading on stage k

$$
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \bullet\left(\frac{1}{\mathbf{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{\mathrm{l}(\mathrm{k}+1)}\left(\frac{1}{\mathbf{O D _ { \text { HLk } }}}+\frac{\mathbf{1}}{\mathbf{O D _ { \text { LHk } }}}\right)\right)
$$

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall (no overdrive)
$t_{\text {PROP }}=$?
- Equal rise/fall with overdrive
$t_{\text {PROP }}=$?
- Minimum Sized
$t_{\text {PROP }}=$?
- Asymmetric Overdrive
$t_{\text {PROP }}=$?
- Combination of equal rise/fall, minimum size and overdrive
$t_{\text {PROP }}=$?

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall with overdrive

$$
t_{P R O P}=t_{R E F} \sum_{k=1}^{n} \mathrm{Fl}_{(k+1)}
$$

- Equal rise/fall (no overdrive)

$$
t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{l(k+1)}}{O D_{k}}
$$

- Minimum Sized
- Asymmetric Overdrive

$$
\begin{gathered}
\mathbf{t}_{\mathrm{PROP}}=\mathbf{t}_{\mathrm{REF}} \cdot\left(\frac { 1 } { 2 } \sum _ { \mathrm { k } = 1 } ^ { \mathrm { n } } \mathbf { F } _ { \mathrm { l } (\mathrm { k } + 1) } \left(\frac{1}{\left.\left.\mathbf{O D _ { \text { HLk } }}+\frac{1}{O D_{\text {LHk }}}\right)\right)} \begin{array}{c}
\mathbf{t}_{\mathrm{PROP}}=?
\end{array}\right.\right. \text { ? }
\end{gathered}
$$

- Combination of equal rise/fall,

$$
t_{P R O P}=?
$$ minimum size and overdrive

Propagation Delay in Multiple-Levels of Logic with Stage Loading and Overdrives

Will now consider A to F propagation for this circuit as an example with different overdrives

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive

$$
\begin{aligned}
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \mathrm{Fl}_{(k+1)} \\
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{l(k+1)}}{O D_{k}}
\end{aligned}
$$

- Minimum Sized

$$
t_{\text {PROP }}=?
$$

- Asymmetric Overdrive

$$
\begin{gathered}
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\mathrm{REF}} \cdot\left(\frac { 1 } { \mathbf { 2 } } \sum _ { \mathrm { k } = 1 } ^ { \mathrm { n } } \mathbf { F } _ { \mathrm { l } (\mathrm { k } + 1) } \left(\frac{1}{\left.\left.\mathbf{O D _ { \mathrm { HLk } }}+\frac{1}{O D_{\mathrm{LHk}}}\right)\right)} \begin{array}{c}
\mathbf{t}_{\mathrm{PROP}}=?
\end{array}\right.\right. \text { ? }
\end{gathered}
$$ minimum size and overdrive

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Equal rise-fall gates, no overdrive

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Equal rise-fall gates, no overdrive

Equal rise-fall gates, no overdrive

> In $0.5 \mathrm{uproc} \mathrm{t}_{\mathrm{REF}}=20 \mathrm{ps}$, $\mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$
(Note: This C_{Ox} is somewhat larger than that in the 0.5 u ON process)

Equal rise-fall gates, no overdrive

> In $0.5 \mathrm{uproc} \mathrm{t}_{\text {REF }}=20 \mathrm{ps}$, $\mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$
(Note: This C_{Ox} is somewhat larger than that in the 0.5 u ON process)

$$
t_{\text {PROP }}=32.5 t_{\text {REF }}
$$

How does this propagation delay compare to that required for a propagation of a signal through 5 -levels of logic with only reference inverters (load is a ref inverter instead of 50 fF as well)?

Loading can have a dramatic effect on propagation delay

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive

$$
\begin{aligned}
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \mathrm{Fl}_{(k+1)} \\
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{(k+1)}}{O D_{k}}
\end{aligned}
$$

- Minimum Sized
- Asymmetric Overdrive

$$
\begin{gathered}
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \bullet\left(\frac { 1 } { \mathbf { 2 } } \sum _ { \mathrm { k } = 1 } ^ { \mathrm { n } } \mathbf { F } _ { (\mathrm { lk } + 1) } \left(\frac{1}{\left.\left.\mathbf{O D _ { \text { HLk } }}+\frac{\mathbf{1}}{\mathbf{O D _ { \text { LHk } }}}\right)\right)} \begin{array}{c}
\mathbf{t}_{\text {PROP }}=?
\end{array}\right.\right. \text { ? }
\end{gathered}
$$ minimum size and overdrive

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Equal rise-fall gates, with overdrive

$$
\mathbf{t}_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{REF}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\mathrm{~F}_{\mathrm{k}+1}}{\mathrm{OD}_{k}}
$$

In 0.5 u proc $\mathrm{t}_{\mathrm{REF}}=20 \mathrm{ps}$, $\mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$
(Note: This C_{ox} is somewhat larger than that in the 0.5 u ON process)

$$
\frac{\mathbf{t}_{\mathrm{PROP}}}{\mathbf{t}_{\mathrm{REF}}}=\sum_{\mathbf{k}=1}^{\mathrm{n}} \frac{\mathbf{F}_{\mathrm{I}_{\mathrm{k}+1}} \mathbf{O D}_{k}}{}
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Equal rise-fall gates, with overdrive

	Equal Rise/Fall	Equal Rise/Fall (with OD)
$\mathrm{C}_{\text {IN }} / \mathrm{C}_{\text {REF }}$		
Inverter	1	OD
NOR	$\frac{3 k+1}{4}$	$\frac{3 k+1}{4} \cdot \mathrm{OD}$
NAND	$3+\mathrm{k}$	$3+\mathrm{k}$
	4	$4 \cdot$ OD
Overdrive		
Inverter		
HL	1	OD
LH	1	OD
NOR		
HL	1	OD
LH	1	OD
$\underset{H L}{\text { NAND }}$	1	OD
LH	1	OD
$t_{\text {PROP }} / t_{\text {REF }}$	$\sum_{k=1}^{n} \mathbf{F}_{1(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{O D_{k}}$

Equal rise-fall gates, with overdrive

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Minimum-sized gates

[^0]$$
\mathrm{t}_{\text {PROP }}=\mathrm{t}_{\mathrm{REF}} \bullet ?
$$

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive

$$
\begin{aligned}
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} F I_{(k+1)} \\
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{(k+1)}}{O D_{k}} \\
& \mathbf{t}_{\text {PROP }}=?
\end{aligned}
$$

- Minimum Sized
- Asymmetric Overdrive

$$
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \bullet\left(\frac{1}{\mathbf{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{\mathrm{I}(\mathrm{k}+1)}\left(\frac{1}{\mathbf{O D _ { \text { HLk } }}}+\frac{\mathbf{1}}{\mathbf{O D _ { \text { LHk } }}}\right)\right)
$$

- Combination of equal rise/fall, minimum size and overdrive

$$
\mathbf{t}_{\mathrm{PROP}}=?
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Minimum-sized gates

Observe that a minimum-sized gate is simply a gate with asymmetric overdrive

Propagation Delay with Minimum-Sized Gates

Recall propagation delay for asymmetric overdrive:

$$
\mathbf{t}_{\mathrm{PROP}}=\mathbf{t}_{\mathrm{REF}} \bullet\left(\frac{1}{2} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{\mathrm{l}(\mathrm{k}+1)}\left(\frac{1}{\mathrm{OD}_{\mathrm{HLk}}}+\frac{1}{O D_{\mathrm{LHk}}}\right)\right)
$$

Thus for minimum-sized devices:

$$
\frac{\mathbf{t}_{\mathrm{PROP}}}{\mathbf{t}_{\mathrm{REF}}}=\left(\frac{1}{2} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{\mathrm{l}(\mathrm{k}+1)}\left(\frac{1}{O D_{\mathrm{HLk}}}+\frac{1}{O D_{\mathrm{LHk}}}\right)\right)
$$

- Still need $O D_{H L}$ and $O D_{\text {LH }}$ for minimum-sized gates
- Still need Fl for minimum-sized gates

Stay Safe and Stay Healthy !

End of Lecture 41

[^0]: In 0.5 u proc $\mathrm{t}_{\text {REF }}=20 \mathrm{ps}$,
 $\mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$

